Abstract
Chronic myelogenous leukemia is characterized by the presence of the reciprocal t(9;22)(q34;q11) in which c-abl located on chromosome 9, and the bcr locus located on chromosome 22, are disrupted and translocated creating a novel bcr-abl fusion gene residing on the derivative chromosome 22. In most cases, the breakpoint in abl occurs within intron 1. Depending on the breakpoint in bcr, exon 2 of abl (a2) joins with exons 1 (e1), 13 (b2), or 14 (b3), or rarely to exon 19 (e19) of bcr resulting in chimeric proteins of p190, p210 and p230, respectively. Currently, several multiplex real-time reverse transcriptase-polymerase chain reaction (RT-PCR)-based assays for detecting bcr-abl are available to assess the levels of the three common fusion transcripts, b2a2, b3a2 and e1a2. Although these assays circumvent the requirement for individual fusion sequence quantitative polymerase chain reaction-based assays, they do not identify the specific fusion transcript. Knowledge of the latter is useful to rule out false-positive results and to compare clones before and after therapy. We designed a novel multiplex real-time RT-PCR assay to detect bcr-abl that allows accurate quantification and determination of the specific fusion transcript. In this assay, abl primer labeled at its 5' end with the fluorescent dye NED (Applied Biosystems) is incorporated into the bcr-abl fusion product during amplification. The NED fluorescent dye in abl primer, without interfering with fluorescent TaqMan probe signal, allows subsequent identification of the fusion transcript by semiautomated high-resolution capillary electrophoresis and GeneScan analysis.
共0条评论