首页 > 期刊杂志 > 正文

A Quantitative Histomorphometric Classifier (QuHbIC) Identifies Aggressive Versus Indolent p16-Positive Oropharyngeal Squamous Cell Carcinoma.

用定量组织形态学分类器(QuHbIC)判定P16阳性的口咽鳞状细胞癌是侵袭性的还是惰性的。

Lewis JS,Ali S,Luo J,Thorstad WL,Madabhushi A

Abstract

Human papillomavirus-related (p16-positive) oropharyngeal squamous cell carcinoma patients develop recurrent disease, mostly distant metastasis, in approximately 10% of cases, and the remaining patients, despite cure, can have major morbidity from treatment. Identifying patients with aggressive versus indolent tumors is critical. Hematoxylin and eosin-stained slides of a microarray cohort of p16-positive oropharyngeal squamous cell carcinoma cases were digitally scanned. A novel cluster cell graph was constructed using the nuclei as vertices to characterize and measure spatial distribution and cell clustering. A series of topological features defined on each node of the subgraph were analyzed, and a random forest decision tree classifier was developed. The classifier (QuHbIC) was validated over 25 runs of 3-fold cross-validation using case subsets for independent training and testing. Nineteen (11.9%) of the 160 patients on the array developed recurrence. QuHbIC correctly predicted outcomes in 140 patients (87.5% accuracy). There were 23 positive patients, of whom 11 developed recurrence (47.8% positive predictive value), and 137 negative patients, of whom only 8 developed recurrence (94.2% negative predictive value). The best other predictive features were stage T4 (18 patients; 83.1% accuracy) and N3 nodal disease (10 patients; 88.6% accuracy). QuHbIC-positive patients had poorer overall, disease-free, and disease-specific survival (P<0.001 for each). In multivariate analysis, QuHbIC-positive patients still showed significantly poorer disease-free and disease-specific survival, independent of all other variables. In summary, using just tiny hematoxylin and eosin punches, a computer-aided histomorphometric classifier (QuHbIC) can strongly predict recurrence risk. With prospective validation, this testing may be useful to stratify patients into different treatment groups.

摘要

在人类乳头瘤病毒相关(p16阳性)的口咽鳞鳞状细胞癌患者中有10%的病例复发(主要是指远处转移),其余病例虽然经过治疗但仍受病痛折磨。因此,判定肿瘤是侵袭性的还是惰性的十分重要。把p16阳性的口咽鳞鳞状细胞癌病例组成微列阵切片,用苏木素-伊红染色,并进行数字扫描。以细胞核为顶点来描绘测量细胞的空间分布与聚集情况,我们创建了一幅新奇的细胞集落图像。对每一个节点的子图构成的一系列微观特征进行分析,得到一个随机森林决策树分类器。把病例集合分成独立的training集和testing集,用25次3折交叉验证方法验证了这个分类器。在160例患者的列阵中,19例(11.9%)肿瘤复发。QuHbIC正确地预测了140例的结果(准确率为87.5%)。在23例阳性病例中,有11例复发(阳性预测值为47.8%)。在137例阴性病例中,仅有8例复发(阴性预测值为94.2%)。其他预测指标中最好的是T4期(18例,准确率83.1%)和N3期(10例,准确率88.6%)。QuHbIC阳性病例的中位总生存时间、无病生存时间和疾病特异生存时间比阴性病例的短(P<0.001)。在多元统计分析中,quhbic阳性病例的无病生存时间和疾病特异生存时间也显著地低于阴性病例(与所有其他变量相独立)。综上所述,仅用微量的苏木素和伊红染色,计算机辅助的组织形态学分类器就能有效地预测复发的危险性。在未来经过验证后,这个检测方法可能在将患者分成不同的治疗组方面有作用。

full text

我要评论

0条评论