首页 > 期刊杂志 > 正文

基于胃癌基因组学的机器学习识别特征性甲基化位点

王晓江[1]刘伟[2]陈宝珍[3]何银珠[2]陈燕坪[1]陈刚[2]

摘要

目的:基于基因组学的数据,通过机器学习,构建胃癌相关甲基化预测模型。方法:下载TCGA(The Cancer Genome Atlas)数据库中胃癌基因突变数据、基因表达数据和甲基化芯片数据,进行特征选择,构建支持向量机(径向基核函数)、随机森林和误差反向传播(error back propagation,BP)神经网络模型,并在新的数据集中进行模型的验证。结果:在3个模型中BP神经网络的检验效能最高(F1 值=0.89,Kappa=0.66,受试者工作特征曲线下面积=0.93)。结论:BP神经网络能够充分利用分子检测的基因组数据进行机器学习,可以用于胃癌相关甲基化预测。

摘要

全文链接

我要评论

0条评论