摘要
目的:构建基于卷积神经网络的甲状腺液基细胞学病理辅助诊断模型。方法:收集700例甲状腺液基细胞学涂片,扫描成数字图像,经良、恶性标注后按比例分成训练集和测试集,噪声滤除后提取有效区域分别在10×和40×分割成512×512的小图像块,构建分类模型对训练集深度学习并对测试集自动判读,经数据增强和参数迭代优化,统计辅助诊断模型的准确率、灵敏度、特异度、阳性预测值和阴性预测值等评价指标。结果:训练集560例含4 926个细胞团的11 164个图像块,测试集140例含977个细胞团的1 402个图像块,选取YOLO网络构建细胞团检测模型,用ResNet50作为分类模型,经过40轮迭代训练,10×倍率下准确率为90.01%,灵敏度89.31%,特异度92.51%,阳性预测值97.70%,阴性预测值70.82%,曲线下面积高达0.97,平均判读时间不足1 s。40×时虽极为灵敏(98.72%)但特异性较差,提示10×放大倍率下辅助诊断模型更为可靠。结论:该辅助诊断模型与病理医师水平基本相当,且诊断效率远远超出。可大大提高阅片一致性和效率,降低漏诊率。未来可继续扩大样本量获取更多病变形态,提高准确率,达到临床应用水平。
共0条评论